СОГЛАСОВАНО

ШМО учителей естественно-научного цикла МБОУ гимназии №4

Протокол №1 от 29 082022

Муниципальное учреждение

«Управление образования администрации города Пятигорска»

Муниципальное бюджетное общеобразовательное учреждение

ГИМНАЗИЯ №4

Рабочая программа по химии (углубленный уровень) для 10-11 классов

2022-2023 учебный год

Составитель учитель Г.М.Шаумциян

ПЯТИГОРСК 2022год

Аннотация к рабочей программе по *химии* 10-11 класс (углубленный уровень).

Настоящая рабочая программа составлена в соответствии со следующими нормативными документами:

- Федеральный государственный образовательный стандарт среднего общего образования (далее -ФГОС СОО), утвержденным приказом Минобрнауки России от 17.05.2012 № 413 (с изменениями и дополнениями)
- Примерная основная образовательная программа среднего общего образования (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-3)

В данной программе прослеживается преемственность между видами деятельности обучаемых, предусмотренных программой основного общего образования и видами деятельности, обеспечивающих реализацию образовательной траектории, связанной с углублённым изучением химии. Содержание данной рабочей программы учитывает не только предметное содержание и возрастные психологические особенности обучаемых, но и профильную подготовку к обучению в высшей школе, в которой химия является профилирующей дисциплиной.

Теоретическое и экспериментальное содержание курса изучается на основе познавательной деятельности обучающихся: применять теоретические знания понятий, законов и теорий химии углублённого уровня для прогнозирования свойств химических объектов и подтверждение этих прогнозов при выполнении химического эксперимента; планировать и проводить химический эксперимент и интерпретировать его результаты; уметь характеризовать и классифицировать химические элементы, вещества и процессы; полно и точно выражать и аргументировать свою точку зрения; находить источники, получать, представлять и сообщать химическую информацию в устной и письменной речи и др.

Данный курс позволяет подготовить обучающихся к осознанному и ответственному выбору профессиональной подготовки к поступлению в вуз, в котором химия является профильной дисциплиной, успешному обучению в нём и выбору профессии.

Согласно образовательному стандарту главные цели среднего (полного) общего образования состоят:

- в формировании целостного представления о мире, основанного на приобретённых знаниях, умениях и способах деятельности;
- 2. в приобретении опыта разнообразной деятельности, опыта познания и самопознания;
- в подготовке к осуществлению осознанного выбора индивидуальной образовательной или профессиональной траектории.

Изучение химии на углублённом уровне вносит большой вклад в достижение этих целей среднего (полного) общего образования **и призвано обеспечить**:

- формирование научной картины мира на основе системы химических знаний (химической картины мира) как её неотъемлемого компонента;
- 2. выработке у обучающихся гуманистических отношений и экологически грамотного поведения в быту и трудовой деятельности, нравственного совершенствования и развития личности обучающихся;
- понимание общественной потребности у обучающихся в развитии химии и химической промышленности;
- формирование у обучающихся отношения к химии как возможной области профессиональной подготовки и практической деятельности;
- формирование успешного участия в публичном представлении результатов экспериментальной и исследовательской деятельности,;
- участие в химических олимпиадах различных уровней в соответствии с желаемыми результатами и адекватной самооценкой собственных возможностей;
- использование химических знаний для объяснения особенностей объектов и процессов природной, социальной, культурной, технической среды;

8. понимание ценности химического языка, выраженного в вербальной и знаковой формах, как составной части речевой культуры современного специалиста высокой квалификации.

Для реализации данной программы используется учебно-методический комплекс под редакцией O.C.Габриеляна.

Общее количество часов на изучении химии на профильном уровне в 10-11 классах 340 ч., в том числе 10 класс -170 часов, 11 класс-170.

Органическая химия.

(5 ч в неделю всего 175 ч, из них 15 ч — резервное время)

Планируемые результаты изучения учебного предмета «Химия» на уровне среднего общего образования

Деятельность учителя в обучении химии в средней школе должна быть направлена на достижение обучающимися следующих *личностных результатов*:

- 1) в *ценностно-ориентационной сфере* чувство гордости за российскую химическую науку, гуманизм, отношение к труду, тцелеустремленность;
- 2) в *трудовой сфере* готовность к осознанному выбору дальнейшей образовательной и профессиональной траектории;
- 3) в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметными результатами освоения выпускниками основной школы программы по химии являются:

- 1) использование умений и навыков различных видов познавательной деятельности, применении основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- 2) использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- 3) умение генерировать идеи и определять средства, необходимые для их реализации;
- 4) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 5) использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата. В области *предметных результатов* изучение химии

предоставляет ученику возможность на ступени среднего общего образования научиться:

- А) на базовом уровне
- 1) в познавательной сфере —
- а) давать определения изученным понятиям;
- б) описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
- в) описывать и различать изученные классы неорганических и органических соединений, химические реакции;
- г) классифицировать изученные объекты и явления;
- д) наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- е) делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- ж) структурировать изученный материал;
- з) интерпретировать химическую информацию, полученную из других источников;
- и) описывать строение атомов элементов I—IV периода с использованием электронных конфигураций атомов;
- к) моделировать строение простейших молекул неорганических и органических веществ, кристаллов;
- 2) в *ценностно-ориентационной сфере* анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
- 3) в трудовой сфере проводить химический эксперимент;
- 4) в *сфере физической культуры* оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.
- Б) на профильном уровне
- 1) в познавательной сфере —
- а) давать определения изученным понятиям;
- б) описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
- в) объяснять строение и свойства изученных классов неорганических и органических соединений;
- г) классифицировать изученные объекты и явления;

- д) наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и
- в быту;
- е) исследовать свойства неорганических и органических веществ, определять их принадлежность к основным классам со-

единений;

- ж) обобщать знания и делать обоснованные выводы о закономерностях изменения свойств веществ;
- з) структурировать учебную информацию;
- и) интерпретировать информацию, полученную из других
- источников, оценивать ее научную достоверность;
- к) объяснять закономерности протекания химических реакций, прогнозировать возможность их протекания на основе знаний о строении вещества и законов термодинамики;
- л) объяснять строение атомов элементов I—IV периода с использованием электронных конфигураций атомов;
- м) моделировать строение простейших молекул неорганических и органических веществ, кристаллов;
- н) проводить расчеты по химическим формулам и уравнениям;
- о) характеризовать изученные теории;
- п) самостоятельно добывать новое для себя химическое знание, используя для этого доступные источники информации;
- 2) в *ценностно-ориентационной сфере* прогнозировать, анализировать и оценивать последствия для окружающей среды

бытовой и производственной деятельности человека, связанной с переработкой веществ;

- 3) в *трудовой сфере* самостоятельно планировать и проводить химический эксперимент, соблюдая правила безопасной работы с веществами и лабораторным оборудованием;
- 4) в сфере физической культуры оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Содержание курса

Курс чётко делится на две части соответственно годам обучения: органическую химию (10 класс) и общую химию (11 класс).

Курс 10 класса начинается со знакомства с предметом органической химии, изучения теории строения органических соединений А. М. Бутлерова и гибридизации атомных орбиталей. Затем рассматриваются классификация органических соединений, принципы их номенклатуры, а также классификация реакций в органической химии.

Первоначальные теоретические знания далее многократно закрепляются и развиваются при изучении классов органических соединений от углеводородов до азотсодержащих соединений и полимеров.

Такое построение курса позволяет в полной мере не только широко использовать дедуктивный подход в обучении химии 10 класса, но и реализовать идею генетической связи между классами органических соединений.

Особое внимание в курсе органической химии уделено сложным для понимания вопросам: взаимному влиянию атомов в молекулах, в том числе для предсказания свойств соединений; механизмам и закономерностям протекания химических реакций, что необходимо для прогнозирования продуктов; пространственному строению углеводов, аминов, аминокислот, белков и нуклеиновых кислот.

Курс 11 класса начинается с рассмотрения сложного строения атома на основе квантовомеханических представлений о строении его ядра и электронной оболочки, а также ядерных реакций. Такая теоретическая база позволяет на другом уровне изучить периодический закон и периодическую систему химических элементов Д. И. Менделеева и ещё раз оценить его научный подвиг, на несколько десятилетий опередившего научную мысль.

Затем изучается строение вещества, основные типы химической связи. Знания учащихся «химии в статике» дополняются сведениями о комплексных соединениях и дисперсных системах. Логично далее рассматриваются такие гомогенные системы, как растворы и способы выражения концентрации в них.

Изучение основ химической термодинамики, понятий об энтальпии и энтропии, законов Гесса, позволяют на более высоком уровне изучить закономерности протекания химических реакций и физико-химических процессов.

Химические реакции в растворах рассматриваются также на новом теоретическом уровне после введения понятия о водородном показателе и изучения протолитической теории кислот и оснований. Обобщаются сведения о неорганических и органических кислотах и основаниях в свете протолитической теории и теории электролитической диссоциации, а также солей в свете теории электролитической диссоциации.

Отдельная глава посвящена окислительно-восстановительным процессам, в том числе методам составления уравнений и электролизу, которые важны для успешной сдачи итогового экзамена. Большое внимание в этой главе уделено и химическим источникам тока, без которых сложно представить современное общество.

Химия неметаллов и металлов, важнейших представителей этих классов веществ и их соединений изучается в системе (состав ↔ строение ↔ свойства ↔ применение ↔ получение ↔ нахождение в природе) и рассматривется в единой связи органической и неорганической химии. Таким образом реализуется главная идея курса — единство живого и неживого материального мира, описываемого общими законами химии.

Раскрыть роль химической науки, как производительной силы современного общества позволяет глава завершающая курс 11 класса «Химия и общество».

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ Органическая химия. 10 класс

ТЕМА 1. НАЧАЛЬНЫЕ ПОНЯТИЯОРГАНИЧЕСКОЙ ХИМИИ (19ч).

Предмет органической химии. Органические вещества. Что изучает органическая химия. Краткий очерк развития органической химии. Сравнение неорганических и органических веществ. Способность атомов углерода соединяться в различные цепи. Углеводороды и их производные. Понятие о заместителе.

Теория строения органических соединений А. М. Бутлерова. Понятие валентности. Работы Ф. А. Кекуле. Роль А. М. Бутлерова в создании теории строения органических соединений. Её основные положения.

Причины многообразия органических соединений: образование одинарных, двойных и тройных связей между атомами углерода. Изомерия. Эмпирическая, молекулярная и структурная формулы органических соединений.

Концепция гибридизации атомных орбиталей. Строение атома углерода: s- и p-орбитали, типы их гибридизации. Образование ковалентных связей. Электронная и электронно-графическая формулы атома углерода.

Классификация органических соединений. Классификация по элементному составу: углеводороды, галоген-, азот- и кислородсодержащие органические соединения.

Классификация по строению углеродного скелета: ациклические и циклические (карбоциклические и гетероциклические) органические вещества.

Классификация углеводородов: предельные (алканы и циклоалканы), непредельные (алкены, алкины, алкадиены), арены.

Классификация органических соединений по наличию функциональных групп (гидроксильная, карбонильная, карбоксильная, нитрогруппа, аминогруппа). Спирты. Альдегиды. Кетоны. Карбоновые кислоты. Нитросоединения. Амины.

Принципы номенклатуры органических соединений. Понятие о химической номенклатуре. Номенклатура тривиальная (историческая) и рациональная.

Международная номенклатура органических соединений — IUPAC. Принципы составления названия органического соединения по номенклатуре IUPAC.

Классификация реакций в органической химии. Понятие о субстрате и реагенте. Классификация реакций по структурным изменениям вещества: присоединения (в том числе полимеризации, отщепления (элеменирования), замещения и изомеризации.

Понятие о гомо- и гетеролитическом разрывах ковалентной связи, электрофилах и нуклеофилах.

Классификация реакций по типу реакционных частиц: радикальные, электрофильные и

нуклеофильные.

Классификация реакций по изменению степеней окисления: окисления и восстановления.

Классификация реакций по частным признакам: галогенирование и дегалогенирование, гидрирование и дегидрирование, гидратации и дегидратации, гидрогалогенирование и дегидрогалогенирование.

Демонстрации. Коллекция органических веществ, материалов и изделий из них. Шаростержневые и объёмные модели (модели Стюарта—Бриглеба) этанола и диэтилового эфира, бутана и изобутана, метана, этилена и ацетилена. Взаимодействиенатрия с этанолом; отсутствие взаимодействия с диэтиловым эфиром. Модель отталкивания гибридных орбиталей (демонстрация с помощью воздушных шаров). Демонстрационная таблица «Различные гибридные состояния атома углерода». Образцы органических соединений различных классов. Модели органических соединений с различными функциональными группами. Горение метана или пропан-бутановой смеси из газовой зажигалки. Взрыв смеси метана с хлором. Обесцвечиваниебромной воды этиленом. Деполимеризация полиэтилена. Получение этилена дегидратацией этанола.

Лабораторный опыт.Изготовление моделей молекул — представителей различных классов органических соединений.

ТЕМА 2.ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (13 ч)

Алканы. Электронное и пространственное строение молекулы метана. Гомологический ряд алканов и их изомерия. Пространственное строение молекул алканов (в том числе и конформеры). Номенклатура алканов.

Промышленные способы получения алканов: крекинг нефтепродуктов, реакция алкилирования, получение синтетического бензина, нагревание углерода в атмосфере водорода. Лабораторные способы получения алканов: реакция Вюрца, пиролиз солей карбоновых кислот со щелочами, гидролиз карбида алюминия.

Физические свойства алканов. Взаимное влияние атомов в органических молекулах. Положительны и отрицательный индуктивные эффекты. Прогноз реакционной способности алканов. Механизм реакций радикального замещения. Реакции радикального замещения: галогенирование и нитрование. Реакции дегидрирования. Реакции окисления. Другие реакции с разрушением углеродной цепи. Применение алканов на основе свойств.

Циклоалканы. Гомологический ряд и строение циклоакланов. Их номенклатура и изомерия. Понятие о пространственной изомерии. Конформеры циклогексана.

Способы получения циклоалканов: ректификация нефти, каталитическое дегидрирование аренов, внутримолерулярная реакция Вюрца.

Физические и химические свойства циклоаканов (реакции присоединения и замещения). Применение циклоаканов.

Демонстрации.Шаростержневые модели молекул алканов для иллюстрации свободного вращения вокруг связи С—С, а также заслонённой и заторможенной конформаций этана. Получение метана из ацетата натрия и гидроксида натрия. Горение метана, пропан-бутановой смеси, парафина в условиях избытка и недостатка кислорода.Взрыв смеси метана с воздухом.Отношение метана, пропанбутановой смеси, бензинак бромной воде и раствору КМnO₄.

Лабораторные опыты. Изготовление парафинированной бумаги, испытание её свойств (отношение к воде и жиру). Обнаружение воды, сажи, углекислого газа в продуктах горения свечи.

Практическая работа 1. Качественный анализ органических соединений.

ТЕМА 3. НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (23 ч)

Алкены.Электронное и пространственное строение молекулы этилена. Гомологический ряд и изомерия алкенов (углеродного скелета, геометрическая или *цис-транс*-изомерия, положения двойной связи, межклассовая). Номенклатура алкенов.

Промышленные способы получения алкенов: крекинг алканов, входящих в состав нефти и попутного нефтяного газа, дегидрирование предельных углеводородов.

Лабораторные способы получения алкенов: реакции элиминирования (дегалогенирование), дегидратация спиртов и дегалогенирование дигалогеналканов, а также дегидрогалогенирование галогенопроизводных предельных углеводородов. Правило Зайцева.

Физические свойства алкенов.

Взаимное влияние атомов в органических молекулах. Мезомерный эффект.

Прогноз реакционной способности алкенов. Механизм реакций электрофильного присоединения.

Реакции присоединения алкенов: галогенирование, гидрирование, гидрогалогенирование, гидратация, полимеризация. Правило Марковникова. Реакции окисления алкенов КМпО₄ (реакция Вагнера) в водной и сернокислой среде. Применение алкенов на основе свойств.

Высокомолекулярныесоединения. Строение полимеров: мономер, полимер, элементарное звено, степень полимеризации.

Линейные, разветвлённые и сетчатые (сшитые) полимеры. Стереорегулярные и нестереорегулярные полимеры.

Отношение полимеров к нагреванию: термопластичные и термореактивные полимеры.

Полимеры на основе этиленовых углеводородов и их производных: полиэтилен, полипропилен, политетрафторэтилен и поливинилхлорид.

Алкадиены.Классификация диеновых углеводородов: изолированные, кумулированные и сопряжённые.

Номенклатура и изомерия диеновых углеводородов (межклассовая, углеродного скелета, взаимного положения кратных связей, геометрическая).

Строение сопряжённых алкадиенов.

Способы получения алкадиенов: дегидрирование алканов, реакция Лебедева, дегидрогалогенирование дигалогеналканов.

Физические свойства диеновых углеводородов. Химические свойства диеновых углеводородов: реакции присоединения, окисления и полимеризации — и особенности их протекания. Нахождение в природе и применение алкадиенов. Терпены.

Эластомеры. Натуральный каучук, как продукт полимеризации изопрена. Синтетические каучуки: бутадиеновый каучук (СБК), дивиниловый, изопреновый, хлоропреновый, бутадиенстирольный. Вулканизация каучуков: резины и эбонит.

Алкины. Электронное и пространственное строение молекулы ацетилена.

Гомологический ряд и изомерия алкинов (углеродного скелета, положения тройной связи, межклассовая). Номенклатура алкинов.

Способы получения алкинов: пиролиз метана (в том числе и окислительный пиролиз природного газа), карбидный метод, дегидрогалогенирование дигалогеналканов, взаимодействие солей ацетиленовых углеводородов (ацетиленидов) с галогеналканами.

Физические свойства ацетиленовых углеводородов. Химические свойства. Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация, тримеризация ацетилена). Реакция Кучерова и правило Эльтекова. Кислотные свойства алкинов. Ацетилениды. Окисление алкинов: раствором КМпО4 и горение.

Области применения ацетилена на основе его свойств. Применение гомологов ацетилена. Полимеры на основе ацетилена. Винилацетилен.

Демонстрации. Объёмные модели цис-, транс-изомеров алкенов. Получение этилена из этанола и доказательство его непредельного строения (реакции с бромной водой и раствором КМпО₄). Обесцвечивание этиленом бромной воды И раствора перманганата этилена.Взаимодействиеалканов и алкеновс концентрированной серной кислотой.Модели молекул алкадиенов с изолированными, кумулированными и сопряжёнными двойными связями. Коагуляция млечного сока каучуконосов (молочая, одуванчика или фикуса). Деполимеризация каучука и доказательство наличия двойных связей в молекулах мономеров (реакции с бромной водой и раствором КМnO₄).Ознакомление с коллекцией «Каучуки и резины». Получение ацетилена из карбида кальция.Объёмные модели алкинов.Взаимодействие апетилена бромной водой.Взаимодействиеацетилена с раствором КМпО₄.Горение ацетилена.

Лабораторные опыты. Ознакомление с коллекцией полимерных образцов пластмасс и волокон.

Практическая работа 2.Получение метана и этилена и исследование их свойств.

ТЕМА 4.АРОМАТИЧЕСКИЕУГЛЕВОДОРОДЫ (14 ч)

Арены.Первые сведения об ароматических соединениях. Строение молекулы бензола: единая π -электронная система, или ароматический секстет.

Гомологический ряд. Изомерия взаимного расположения заместителей в бензольном кольце. Номенклатура аренов. Ксилолы.

Промышленные способы получения бензола и его гомологов: ароматизация алканов и циклоалканов,

тримеризация ацетилена (реакция Зелинского).

Лабораторные способы получения аренов: алкилирование бензола, пиролиз солей ароматических кислот.

Физические свойства аренов.Прогноз реакционной способности аренов. Реакции электрофильного замещения и их механизм: галогенирование, алкилирование (реакция Фриделя—Крафтса), нитрование, сульфирование.

Реакции присоединения: гидрирование, радикальное галогенирование. Реакции окисления.

Толуол, как гомолог бензола. Особенности химических свойств алкилбензолов. Ориентанты первого и второго рода. Взаимное влияние атомов в молекулах алкилбензолов на примере реакции замещения. Реакции окисления. Применение аренов на основе их свойств.

Демонстрации. Шаростержневые и объёмные модели бензола и его гомологов. Растворение в бензоле различных органических и неорганических веществ (например, серы, иода). Ознакомление с физическими свойствами бензола (растворимость в воде, плотность, температура плавления — выдерживание запаянной ампулы с бензолом в бане со льдом). Горение бензола на стеклянной палочке. Отношение бензола к бромной воде и раствору КМпО4. Нитрование бензола. Отношение толуола к воде. Растворение в толуоле различныхорганических и неорганических веществ (например, серы, иода). Обесцвечивание толуолом раствора КМпО4 и бромной воды.

ТЕМА 5. ПРИРОДНЫЕ ИСТОЧНИКИ УГЛЕВОДОРОДОВ (6 ч)

Природный гази попутный нефтяной газ.Природный газ и его состав. Промышленное использование и переработка природного газа.

Попутные нефтяные газы и их переработка. Фракции попутного нефтяного газа: газовый бензин, пропан-бутановая смесь и сухой газ.

Нефть. Нефть, как природный источник углеводородов, её состав и физические свойства.

Углеводороды как предмет международного сотрудничества и важнейшая отрасль экономики России.

Промышленная переработка нефти. Ректификация (фракционная перегонка). Фракции нефти: бензиновая, лигроиновая, керосиновая, газойль, мазут. Соляровые масла. Вазелин. Парафин. Гудрон. Крекинг нефтепродуктов: термический, каталитический, гидрокрекинг. Риформинг. Циклизация. Ароматизация. Детонационная стойкость бензина. Октановое число.

Каменный уголь. Промышленная переработка каменного угля. Нахождение в природе и состав углей: каменный уголь, антрацит, бурый уголь.

Коксование и его продукты: кокс, каменноугольная смола, надсмольная вода, коксовый газ. Газификация угля. Водяной газ. Каталитическое гидрирование угля.

ТЕМА 6. ГИДРОКСИЛСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ ВЕЩЕСТВА (21 ч)

Спирты. Понятие о спиртах, история их изучения. Функциональная гидроксильная группа.

Классификация спиртов: по типу углеводородного радикала (предельные, непредельные, ароматические), по числу гидроксильных групп в молекуле (одно- и многоатомные), по типу углеродного атома, связанного с гидроксильной группой (первичные, вторичные, третичные).

Электронное и пространственное строение молекул спиртов. Гомологический ряд предельных одноатомных спиртов. Изомерия (положения функциональной группы, углеродного скелета, межклассовая) и номенклатура алканолов.

Общие способы получения алканолов: гидратация алкенов, гидролиз галогеналканов, восстановление карбонильных соединений. Способы получения некоторых алканолов: метилового спирта — реакцией щелочного гидролиза хлорметана и из синтез-газа; этилового спирта — спиртовым брожением глюкозы и гидратацией этилена; пропанола-1— восстановлением пропионового альдегида; пропанола-2 — гидрированием ацетона и гидратацией пропилена.

Физические свойства спиртов. Водородная связь. Прогноз реакционной способности предельных одноатомных спиртов и его подтверждение при рассмотрении химических свойствспиртов: кислотные свойства, реакции нуклеофильного замещения с галогеноводородами, межмолекулярная и внутримолекулярная дегидратация (получение простых эфиров и алкенов), реакции дегидрирования, окисления и этерификации.

Низшие и высшие (жирные) спирты. Синтетические моющие средства (СМС). Области применения метанола на основе его свойств. Токсичность метанола. Области применения этилового спирта на основе его свойств. Алкоголизм как социальное явление и его профилактика.

Многоатомные спирты. Атомность спиртов. Гликоли и глицерины. Изомерия, номенклатура и получение многоатомных спиртов. Особенности химических свойств многоатомных спиртов. Качественная реакция на многоатомные спирты.

Этиленгликоль и глицерин, как представители многоатомных спиртов. Их применение.

Фенолы. Состав и строение молекулы фенола. Атомность фенолов. Гомологический ряд, изомерия и номенклатура фенолов.

Способы получения фенола: из каменноугольной смолы, кумольный способ, из галогенаренов и методом щелочного плава.

Физические свойства фенолов. Химические свойства фенола: кислотные свойства, окисление, реакции электрофильного замещения (галогенирование, нитрование), поликонденсация.

Качественные реакции на фенол: с бромной водой и раствором хлорида железа(III). Применение фенолов.

Демонстрации. Шаростержневыемодели молекул одноатомных и многоатомных спиртов. Физические свойства этанола, пропанола-1, бутанола-1.Взаимодействие натрия спиртом.Взаимодействиеспирта с раствором дихромата калия в серной кислоте.Получение сложного эфира.Получение этилена из этанола. Сравнение реакций горения этилового и пропилового спиртов. Обнаружение этилового спирта в различных продуктах с помощью иодоформной пробы. Взаимодействие глицерина со свежеосажденным $Cu(OH)_2$. Распознаваниеводных растворовглицерина и этанола. Отношение этиленгликоля и глицерина к воде и органическим растворителям. Растворимость фенола в воде при обычной и повышенной температурах. Вытеснение фенола из фенолята натрия угольной кислотой. Качественные реакции на фенол: обесцвечивание бромной воды и с раствором FeCl₃. Обесцвечивание фенола растворомКМnO₄.

Практическая работа №3. Исследование свойств спиртов.

ТЕМА 7. АЛЬДЕГИДЫ И КЕТОНЫ (10 ч)

Альдегиды. Альдегиды как карбонильные органические соединения. Состав их молекул и электронное строение. Гомологический ряд, изомерия и номенклатура альдегидов.

Способы получения: окисление соответствующих спиртов, окисление углеводородов (Вакерпроцесс), гидратация алкинов, пиролиз карбоновых кислот или их солей, щелочной гидролиз дигалогеналканов.

Физические свойства альдегидов. Прогноз реакционной способности альдегидов. Химические свойства: реакции присоединения (циановодорода, гидросульфита натрия, реактива Гриньяра, гидрирование), реакции окисления (серебряного зеркала и комплексами меди(II)), реакции конденсации(альдольная и кротоновая, с азотистыми основаниями и поликонденсации), реакции замещения по \square -углеродному атому.

Кетоны. Кетоны как карбонильные соединения.Особенности состава и электронного строения их молекул.

Гомологический ряд, изомерия и номенклатура кетонов. Способы получения кетонов.

Физические свойства кетонов. Прогноз реакционной способности кетонов.

Химические свойства: реакции присоединения (циановодорода, гидросульфита натрия, реактива Гриньяра, гидрирование), реакции окисления, реакции замещения по α-углеродному атому.

Демонстрации.Шаростержневые и Стюарта—Бриглеба модели альдегидов. Окисление бензальдегида кислородом воздуха.Получение фенолформальдегидного полимера.

Лабораторные опыты.Получение уксусного альдегида окислением этанола.Ознакомление с физическими свойствами альдегидов (ацетальдегида и водного раствора формальдегида). Реакция «серебряного зеркала».Реакция с гидроксидом меди(II) при нагревании.Отношение ацетона к воде. Ацетон как органический растворитель.

Практическая работа 4. Исследование свойств альдегидов и кетонов.

ТЕМА 8. КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ (13/20 ч)

Карбоновые кислоты. Понятие о карбоновых кислотах. Классификация карбоновых кислот: по природе углеводородного радикала, по числу карбоксильных групп. Электронное и пространственное строение карбоксильной группы. Карбоновые кислоты в природе.

Гомологический ряд предельных одноосновных карбоновых кислот. Изомерия и номенклатура.

Получение карбоновых кислот окислением алканов, алкенов, первичных спиртов и альдегидов, а также гидролизом (тригалогеналканов, нитрилов).

Получение муравьиной кислоты взаимодействием гидроксида натрия с оксидом углерода (II), уксусной — карбонилированием метилового спирта и брожением этанола, пропионовой — карбонилированием этилена.

Физические свойства карбоновых кислот, обусловленные молярными массами и водородными связями. Прогноз химических свойств карбоновых кислот. Общие свойства кислот. Реакции по углеводородному радикалу. Образование функциональных производных. Реакция этерификации. Образование галогенангидридов, ангидридов, амидов, нитрилов.

Муравьиная и уксусная кислоты, как представители предельных одноосновных карбоновых кислоты. Пальмитиновая и стеариновая кислоты, как представители высших предельных одноосновных карбоновых кислот. Акриловая и метакриловая кислоты, как представители непредельных одноосновных карбоновых кислот. Олеиновая, линолевая и линоленовая, как представителивые и непредельных одноосновных карбоновых кислот. Бензойная и салициловая, как представители ароматических карбоновых кислот. Двухосновные карбоновые кислоты на примере щавелевой. Применение и значение карбоновых кислот.

Соли карбоновых кислот. Мыла. Получение солей карбоновых кислот на основе общих свойств кислот: взаимодействием с активными металлами, основными оксидами, основаниями или солями. Получение солей карбоновых кислот щелочным гидролизом сложных эфиров. Химические свойства солей карбоновых кислот: гидролиз по катиону, реакции ионного обмена, пиролиз, электролиз водных растворов. Мыла. Жёсткость воды и способы её устранения. Применение солей карбоновых кислот.

Сложные эфиры. Строение молекул, номенклатура и изомерия сложных эфиров. Их физические свойства. Способы получения сложных эфиров: реакция этерификации, взаимодействие спиртов с ангидридами или галогенангидридами кислот реакцией поликонденсации на примере получения полиэтилентерефталата. Химические свойства сложных эфиров: гидролиз и горение. Применение сложных эфиров.

Воски и жиры. Воски, их строение, свойства и классификация: растительные и животные. Биологическая роль. Жиры, их строение и свойства: омыление, гидрирование растительных жиров. Биологическая роль жиров. Замена жиров в технике непищевым сырьём.

Демонстрации. Шаростержневые и Стюарта—Бриглеба модели альдегидов.

Окисление бензальдегида кислородом воздуха.Получение фенолформальдегидного полимера. Шаростержневыемодели карбоновых «Классификация молекул кислот. Таблица пропанола-1, кислот». Физические свойства этанола, бутанола-1.Получение уксуноизоамилового эфира. Коллекция органических кислот. Отношение предельных и непредельных кислот к бромной воде и раствору перманганата калия. Получение мыла из жира. Сравнение моющих свойств хозяйственного мыла и СМС в жёсткой воде. Коллекция сложных эфиров. Шаростержневые модели молекул сложных эфиров и изомерных им карбоновых кислот. Получение приятно пахнущего сложного эфира. Отношение сливочного, подсолнечного, машинного масел и маргарина к водным растворам брома и КМпО₄.

Лабораторные опыты.Ознакомление с физическими свойствами некоторых предельных одноосновных кислот: муравьиной, уксусной, масляной. Отношение различных кислот к воде.Взаимодействие раствора уксусной кислоты: с металлом (Mg или Zn); оксидом металла (CuO);гидроксидом металла (Cu(OH) $_2$ или $Fe(OH)_3$), солью, (Na $_2CO_3$ и раствором мыла). Ознакомление с образцами сложных эфиров. Отношение сложных эфиров к воде и органическим веществам (красителям).Выведение жирного пятна с помощью сложного эфира. Растворимость жиров в воде и органических растворителях.

Практическая работа 5.Исследование свойств карбоновых кислот и их производных.

ТЕМА 9. УГЛЕВОДЫ (10/13 ч)

Углеводы. Состав молекул углеводов и их строение.Классификация углеводов: моно- ди-, олиго- и полисахариды; кетозы и альдозы; тетрозы, пентозы, гексозы. Восстанавливающие и невосстанавливающие углеводы. Биологическая роль углеводов и значение в жизни человека.

Моносахариды. Строение молекулы и физические свойства глюкозы. Циклические формы глюкозы и их отражение с помощью формул Хеуорса. Гликозидный гидроксил. α -D-глюкоза и β -D-глюкоза. Таутомерия как результат равновесия в растворе глюкозы.

Получение глюкозы. Фотосинтез. Химические свойства: реакции по альдегидной и по гидроксильным группам. Спиртовое, молочнокислое и маслянокислое брожения глюкозы.

Фруктоза как изомер глюкозы. Структура и физические и химические свойства.

Дисахариды. Строение молекул дисахаридов. Сахароза. Нахождение в природе. Производство сахарозы из сахарной свёклы. Химические свойства сахарозы. Лактоза и мальтоза как изомеры сахарозы. Их свойства и значение.

Полисахариды. Строение молекул полисахаридов. Крахмал. Состав и строение его молекул. Амилоза и амилопектин. Химические свойства: гидролиз и качественная реакция. Нахождение в природе, получение крахмала и его применение. Биологическая роль крахмала.

Строение молекул целлюлозы. Свойства целлюлозы: образование сложных эфиров и продуктов алкилирования. Нитраты и ацетаты целлюлозы — основа получения взрывчатых веществ и искусственных волокон. Нахождение в природе и её биологическая роль. Применение целлюлозы

Демонстрации.Образцы углеводов и изделий из них.Получение сахарата кальция и выделение сахарозы из раствора сахарата кальция.Реакция «серебряного зеркала» для глюкозы. Реакции с фуксинсернистой кислотой.

Отношение растворов сахарозы и мальтозы к гидроксиду меди(II). Ознакомление с физическими свойствами крахмала.Получение крахмального клейстера. Ознакомление с физическими свойствами целлюлозы.Получение нитратов целлюлозы.

Лабораторные опыты.Ознакомление с физическими свойствами глюкозы.Взаимодействие глюкозы с гидроксидом меди(II) при комнатной температуре и при нагревании. Кислотный гидролиз сахарозы. Качественная реакция на крахмал. Ознакомление с коллекцией волокон.

Практическая работаб. Исследование свойств углеводов.

ТЕМА 10. АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ (15/25 ч)

Амины. Понятие об аминах. Классификация аминов: по числу углеводородных радикалов (первичные, вторичные, третичные) и по их природе (алифатические, ароматические и жирноароматические).

Электронное и пространственное строение молекул аминов. Гомологический ряд, изомерия и номенклатура предельных алифатических аминов. Гомологический ряд, изомерия и номенклатура ароматических аминов.

Способы получения алифатических аминов: взаимодействием аммиака со спиртами, взаимодействием галогеналканов с аммиаком, взаимодействием солей алкиламмония со щёлочами Способы получения ароматических аминов: восстановлением ароматических нитросоединений (реакция Зинина), взаимодействием ароматических аминов с галеналканами.

Прогноз реакционной способности аминов на основе их электронного строения. Химические свойства аминов, как органических оснований. Реакции электрофильного замещения ароматических аминов, Реакции окисления, алкилирования. Образование амидов. Взаимодействие аминов с азотистой кислотой. Применение аминов на основе свойств.

Аминокислоты. Понятие об аминокислотах. Строение молекул и номенклатура аминокислот.

Способы получения аминокислот: гидролиз белков, синтез на основе галогенопроизводных карбоновых кислот, циангидринный синтез, биотехнологический способ.

Физические свойства аминокислот. Аминокислоты как амфотерные органические соединения: взаимодействие с кислотами и щелочами, образование биполярного иона. Реакции этерификации и конденсации.

Пептидная связь и полипептиды. Качественные реакции на аминокислоты: нинигидриновая и ксантопротеинования. Применение аминокислот и биологическая роль пептидов.

Белки.Структуры молекул белков: первичная, вторичная, третичная, четвертичная. Синтез белков.Свойства белков: денатурация, гидролиз, качественные реакции. Биологические функции белков.

Нуклеиновые кислоты. Понятие об азотистых основаниях. Нуклеиновые кислоты: РНК и ДНК. Нуклеотиды и их состав. Сравнение ДНК и РНК и их роль в передачи наследственных признаков организмов и биосинтезе белка.

Демонстрации. Физические свойства анилина. Отношение бензола и анилина кбромной воде. Коллекцияанилиновых красителей. Горение метиламина. Взаимодействиеметиламина и анилина с водой и кислотами. Окрашиваниетканей анилиновыми красителями. Гидролиз белков с помощью пепсина. Обнаружение функциональных групп в молекулах аминокислот (на примере глицина). Обнаружение аминокислот с помощью нингидрина. Растворение и осаждение белков. Денатурация белков. Качественные реакции на белки. Модели ДНК и различных видов РНК.

Лабораторные опыты. Изготовление шаростержневых моделей молекул изомерных аминов. Изготовление моделей простейшихпептидов. Растворение белков в воде и их коагуляция. Обнаружение белка в курином яйце и молоке.

Практическая работа7. Амины. Аминокислоты. Белки.

Практическая работа8. Идентификация органических соединений.

Резервное время 7 час.

Обшая химия.11 класс

ТЕМА 1.СТРОЕНИЕ АТОМА. ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА. (16 ч).

Строение атома.Сложное строение атома. Доказательства этого: катодные и рентгеновские лучи, фотоэффект, радиоактивность. Открытие элементарных частиц: электрона и нуклонов (протонов и нейтронов). Модели Томсона, Резерфорда, Бора. Постулаты Бора. Строение атома в свете квантовомеханических представлений.

Нуклоны (протоны и нейтроны), нуклиды. Понятие об изобарах и изотопах. Ядерные реакции и их уравнения.

Корпускулярно-волновой дуализм электрона. Понятие электронной орбитали и электронного облака. s-, p-, d- и f-орбитали. Квантовые числа. Строение электронной оболочки атома.

Порядок заполнения электронами атомных орбиталей в соответствии с принципом минимума энергии, запретом Паули, правилом Хунда, правилом Клечковского. Электронные формулы атомов и ионов

Периодический закон Д. И. Менделеева. Предпосылки открытия: работы предшественников, решения международного съезда химиков в г. Карлсруэ, личностные качества Д. И. Менделеева.

Открытие периодического закона. Менделеевская формулировка периодического закона. Взаимосвязь периодического закона и теории строения атома. Современная формулировка периодического закона.

Взаимосвязь периодического закона и периодической системы. Периодическая система и строение атома. Физический смысл символики периодической системы.

Изменение свойств элементов в периодах и группах, как функция строения их атомов. Понятие об энергии ионизации и сродства к электрону.

Периодичность их изменения металлических и неметаллических свойств элементов в группах и периодах, как функция строения электронных оболочек атомов.

Значение периодического закона и периодической системы.

Демонстрации. Фотоэффект. Катодные лучи (электронно-лучевые трубки). Портреты Томсона, Резерфорда, Бора. Портреты Иваненко и Гапона; Берцелиуса, Деберейнера, Ньюлендса, Менделеева. Модели орбиталей различной формы. Спектры поглощения и испускания соединений химических элементов (с помощью спектроскопа). Различные варианты таблиц периодической системы химических элементов Д. И. Менделеева. Образцы простых веществ, оксидов и гидроксидов элементов третьего периода и демонстрация их свойств.

ТЕМА 2. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА (15 ч)

Химическая связь.Понятие о химической связи. Основные характеристики химической связи: энергия, длина, дипольный момент.

Ионная химическая связь и ионные кристаллические решётки. Зависимость физических свойств веществ от типа кристаллической решетки.

Возбуждённое состояние атома. Понятие о ковалентной связи. Обменный механизм образования ковалентной связи. Электроотрицательность. Направленность ковалентной связи, её кратность. σ - и π - связи. Донорно-акцепторный механизм образования ковалентной связи. Типы кристаллических решёток с ковалентной связью: атомная и молекулярная.

Зависимость физических свойств веществ от типа кристаллической решетки.

Природа химической связи в металлах и сплавах. Общие физические свойства металлов: тепло- и электропроводность, пластичность, металлический блеск, магнитные свойства.

Металлическая кристаллическая решётка и её особенности, как функция металлической связи.

Комплексные соединения.Комплексообразование и комплексные соединения. Строение комплексных соединений: комплексообразователь и координационное число, лиганды, внутренняя и внешняя сферы.

Классификация комплексов: хелаты, катионные, анионные и нейтральные, аквакомплексы, аммиакаты, карбонилы металлов. Номенклатура комплексных соединений и их свойства. Диссоциация комплексных соединений. Значение комплексных соединений и их роль в природе.

Агрегатные состояния веществ и фазовые переходы. Газы и газовые законы (Бойля-Мариотта, Шарля, Гей-Люссака). Уравнение Мендлеева-Клапейрона для идеального газа. Жидкости. Текучесть, испарение, кристаллизация.

Твёрдые вещества. Плавление. Фазовые переходы. Сублимация и десублимация. Жидкие кристаллы. Плазма

Межмолекулярные взаимодействия.Водородная связь и её разновидности: межмолекулярная и внутримолекулярная. Физические свойства веществ с водородной связью. Её биологическая роль в организации структур белков и нуклеиновых кислот.Вандерваальсово взаимодействие и его типы: ориентационное, индукционное и дисперсионное.

Демонстрации. Коллекция кристаллических веществ ионного строения, аморфных веществ и изделий из них. Модели кристаллических решёток с ионной связью. Модели молекул различной архитектуры. Модели кристаллических веществ атомной и молекулярной структуры. Коллекция веществ атомного и молекулярного строения и изделий из них. Портрет Вернера. Получение комплексных органических и неорганических соединений. Демонстрация сухих кристаллогидратов. Модели кристаллических решёток металлов. Вода в различных агрегатных состояниях и её фазовые переходы. Возгонка иода или бензойной кислоты. Диаграмма «Фазовые переходы веществ». Модели молекул ДНК и белка.

Лабораторные опыты. Взаимодействие многоатомных спиртов и глюкозы с фелинговой жидкостью. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Практическая работа 1. Получение комплексных органических и неорганических соединений и исследование их свойств.

ТЕМА 3. ДИСПЕРСНЫЕ СИСТЕМЫ И РАСТВОРЫ (13 ч)

Дисперсные системы. Химические вещества и смеси. Химическая система. Гомогенные и гетерогенные смеси. Дисперсная система: дисперсионная среда и дисперсная фаза. Классификация дисперсных систем.

Аэрозоли. Пропелленты. Эмульсии и эмульгаторы. Суспензии. Седиментация.

Коллоидные растворы. Эффект Тиндаля. Получение коллоидных растворов дисперсионным, конденсационным и химическим способами. Золи и коагуляция. Гели и синерезис.Значение коллоидных систем.

Растворы. Растворы как гомогенные системы и их типы: молекулярные, молекулярно-ионные, ионные. Способы выражения концентрации растворов: объёмная, массовая и мольная доли растворённого вещества. Молярная концентрация растворов.

Демонстрации.Образцы дисперсных систем и их характерные признаки. Образцы (коллекции) бытовых и промышленных аэрозолей, эмульсий и суспензий. Прохождение луча света через коллоидные и истинные растворы (эффект Тиндаля). Зависимость растворимости в воде твёрдых, жидких и газообразных веществ от температуры. Получение пересыщенного раствора тиосульфата натрия и его мгновенная кристаллизация.

Лабораторные опыты. Знакомство с коллекциями пищевых, медицинских и биологических гелей и золей. Получение коллоидного раствора хлорида железа(III).

Практическая работа2.Растворимость веществ в воде и факторы её зависимости от различных факторов.

Практическая работа3. Очистка воды фильтрованием, дистилляцией и перекристаллизацией.

Практическая работа 4.Приготовление растворов различной концентрации.

Практическая работа 5. Определение концентрации кислоты титрованием.

ТЕМА 4. ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ И ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕСОВ (14 ч)

Основы химической термодинамики. Химическая термодинамика. Термодинамическая система. Открытая, закрытая, изолированная системы. Внутренняя энергия системы. Энтальпия, или теплосодержание системы. Первое начало термодинамики. Изохорный и изобарный процессы. Термохимическое уравнение.

Энтальпия. Стандартная энтальпия. Расчёт энтальпии реакции. Закон Гесса и следствия из него. Энтропия. Второе и третье начала термодинамики. Свободная энергия Гиббса.

Скорость химических реакций. Понятие о скорости реакции. Энергия активации и активированный комплекс. Закон действующих масс. Кинетическое уравнение и константа скорости химической реакции. Порядок реакции.

Факторы, влияющие на скорость гомогенной реакции: природа и концентрация реагирующих веществ, температура. Температурный коэффициент. Уравнение С. Аррениуса.

Факторы, влияющие на скорость гетерогенной реакции: концентрация реагирующих веществ и площадь их соприкосновения

Основные понятия каталитической химии: катализаторы и катализ, гомогенный и гетерогенный катализ, промоторы, каталитические яды и ингибиторы. Механизм действия катализаторов.

Основные типы катализа: кислотно-основной, окислительно-восстановительный, металлокомплексный и катализ металлами, ферментативный. Ферменты, как биологические катализаторы белковой природы.

Химическое равновесие. Понятие об обратимых химических процессах. Химическое равновесие и константа равновесия. Смещение химического равновесия изменением концентрации веществ, изменением давления и температуры.

Демонстрации. Экзотермические процессы на примере растворения серной кислоты в воде. Эндотермические процессы на примере растворения солей аммония. Изучение зависимости скорости химической реакции от концентрации веществ, температуры (взаимодействие тиосульфата натрия с серной кислотой), поверхности соприкосновения веществ (взаимодействие соляной кислоты с гранулами и порошками алюминия или цинка). Проведение каталитических реакций разложения пероксида водорода, горения сахара, взаимодействия иода и алюминия. Коррозия железа в водной среде с уротропином и без него. Наблюдение смещения химического равновесия в системах: $2NO_2 \leftrightarrow N_2O_4$, $FeCl_3 + KSCN \leftrightarrow Fe(SCN)_3 + 3KCl$.

Лабораторный опыт. Знакомство с коллекцией СМС, содержащих энзимы.

Практическая работа 6. Изучение влияния различных факторов на скорость химической реакции.

ТЕМА 5. ХИМИЧЕСКИЕ РЕАКЦИИ В ВОДНЫХ РАСТВОРАХ (22 ч)

Свойства растворов электролитов. Вода — слабый электролит. Катион гидроксония. Ионное произведение воды. Нейтральная, кислотная и щелочная среды. Понятие рН. Водородный показатель. Индикаторы. Роль рН среды в природе и жизни человека. Ионные реакции и условия их протекания.

Ранние представления о кислотах и основаниях. Кислоты и основания с позиции теории электролитической диссоциации. Теория кислот и оснований Бренстеда—Лоури. Сопряжённые кислоты и основания. Амфолиты.

Классификация кислот и способы их получения. Общие химические свойства органических и неорганических кислот: реакции с металлами, с оксидами и гидроксидами металлов, с солями, со спиртами. Окислительные свойства концентрированной серной и азотной кислот.

Классификация оснований и способы их получения. Общие химические свойства щелочей: реакции с кислотами, кислотными и амотерными оксидами, солями, некоторыми металлами и неметаллами, с органическими веществами (галоидопроизводными углеводородов, фенолом, жирами). Химические свойства нерастворимых оснований: реакции с кислотами, реакции разложения и комплексообразования. Химические свойства бескислородных оснований (аммиака и аминов): взаимодействие с водой и кислотами.

Классификация солей органический и неорганических кислот. Основные способы получения солей. Химические свойства солей: разложение при нагревании, взаимодействие с кислотами и щелочами, другими солями. Жёсткость воды и способы её устранения.

Гидролиз. Понятие гидролиза. Гидролиз солей и его классификация: обратимый и необратимый, по аниону и по катиону, ступенчатый. Усиление и подавление обратимого гидролиза. Необратимый гидролиз бинарных соединений.

Демонстрации. Сравнение электропроводности растворов электролитов. Смещение равновесия диссоциации слабых кислот. Индикаторы и изменение их окраски в разных средах.Взаимодействие концентрированных азотной и серной кислот, а также разбавленной азотной кислоты с медью. Реакция «серебряного зеркала» для муравьиной кислоты.Взаимодействие аммиака и метиламина с хлороводородом и водой. Получение и свойства раствора гидроксида натрия. Получение мыла и изучение среды его раствора индикаторами.Гидролиз карбонатов, сульфатов и силикатов щелочных металлов, нитрата свинца(II) или цинка, хлорида аммония.

Лабораторные опыты. Реакции, идущие с образованием осадка, газа или воды, для органических и неорганических электролитов. Свойства соляной, разбавленной серной и уксусной кислот.Взаимодействие гидроксида натрия с солями: сульфатом меди(II) и хлоридом аммония. Получение и свойства гидроксида меди(II). Свойства растворов солей сульфата меди и хлорида железа(III). Исследование среды растворов с помощью индикаторной бумаги.

Практическая работа 7. Исследование свойств минеральных и органических кислот.

Практическая работа 8. Получение солей различными способами и исследование их свойств.

Практическая работа 9. Гидролиз органических и неорганических соединений.

ТЕМА 6. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ (14 ч)

Окислительно-восстановительные реакции. Понятие об окислительно-восстановительных реакциях. Степень окисления. Процессы окисления и восстановления. Важнейшие окислители и восстановители. Метод электронного баланса для составления уравнений окислительно-восстановительных реакций. Методы ионно-электронного баланса (метод полуреакций). Окислительно-восстановительные потенциалы.

Электролиз. Понятие электролиза как окислительно-восстановительного процесса, протекающего на электродах. Электролиз расплавов электролитов.

Электролиз растворов электролитов с инертными электродами. Электролиз растворов электролитов с и активным анодом. Практическое значение электролиза: электрохимическое получение веществ, электрохимическая очистка (рафинирование) металлов, гальванотехника, гальванопластика, гальванизация.

Химические источники тока. Гальванические элементы. Стандартный водородный электрод. Стандартные электродные потенциалы.Современные химические источники тока: батарейки и аккумуляторы.

Коррозия металлов и способы защиты от неё. Понятие о коррозии. Виды коррозии по характеру окислительно-восстановительных процессов: химическая и электрохимическая. Способы защиты металлов от коррозии: применение легированных сплавов, нанесение защитных покрытий, изменение состава или свойств коррозионной среды, электрохимические методы защиты.

Демонстрации.Восстановление оксида меди(II) углем и водородом. Восстановление дихромата калия этиловым спиртом. Окислительные свойства дихромата калия. Окисление альдегида в карбоновую кислоту (реакция «серебряного зеркала» или реакция с гидроксидом меди(II). Электролиз раствора сульфата меди(II). Составление гальванических элементов. Коррозия металлов в различных условиях и методы защиты от неё.

Лабораторные опыты. Взаимодействие металлов с неметаллами, а также с растворами солей и кислот. Взаимодействие концентрированных серной и азотной кислот с медью. Окислительные свойства перманганата калия в различных средах. Ознакомление с коллекцией химических источников тока (батарейки, свинцовые аккумуляторы и т. д.).

ТЕМА 7. НЕМЕТАЛЛЫ (41ч)

Водород. Двойственное положение водорода в периодической системе химических элементов: в I-A и VII-A группах. Изотопы водорода.

Нахождение в природе. Строение молекулы, физические свойства. Химические свойства водорода: восстановительные (с более электроотрицательными неметаллами, с оксидами металлов, гидрирование органических веществ) и окислительные (с металлами І-А и ІІ-А групп). Получение водорода: в лаборатории (взаимодействием кислот с металлами) и промышленности (конверсией). Применение водорода.

Галогены. Элементы VIIA-группы — галогены: строение атомов и молекул, галогены-простые вещества, соединения: сравнительная характеристика.

Галогены в природе. Закономерности изменения физических и химических свойств в VIIA-группе: взаимодействие галогенов с металлами, неметаллами, со сложными неорганическими и органическими веществами. Получение и применение галогенов.

Строение молекул и физические свойства галогеноводородов. Химические свойства галогеноводородных кислот: кислотные свойства, восстановительные свойства, взаимодействие с органическими веществами. Получение галогеноводородов. Галогениды. Качественные реакции на галогенид-ионы.

Оксиды хлора. Кислородсодержащие кислоты хлора. Соли кислородсодержащих кислот хлора. Получение и применение важнейших кислородных соединений хлора.

Кислород. Общая характеристика элементов VIA-группы.

Кислород: нахождение в природе, получение (лабораторные и промышленные способы) и физические свойства.

Химические свойства кислорода: окислительные (с простыми веществами, с низшими оксидами, с органическими и неорганическими веществами) и восстановительные (с фтором). Области применения.

Озон. Нахождение в природе. Физические и химические свойства озона. Его получение и применение. Роль озона в живой природе.

Строение молекулы пероксида водорода, его физические и химические свойства (окислительные и восстановительные). Получение и применение пероксида водорода.

Сера. Нахождение серы в природе. Валентные возможности атомов серы. Аллотропия серы. Физические свойства ромбической серы. Химические свойства серы: окислительные (с металлами, с водородом и с менее электроотрицательными неметаллами) и восстановительные (с кислородом, кислотами-окислителями), реакции диспропорционирования (со щелочами). Получение серы и области применения.

Строение молекулы и свойства сероводорода: физические, физиологические и химические. Сероводород, как восстановитель, его получение и применение. Сульфиды и их химические свойства. Распознавание сульфид-ионов.

Сернистый газ, его физические свойства, получение и применение. Химические свойства оксида серы(IV): восстановительные (с кислородом, бромной водой, перманганатом калия и сероводородом) и свойства кислотных оксидов со щелочами. Сернистая кислота и её соли.

Серный ангидрид, его физические свойства, получение и применение. Химические свойства оксида серы(VI), как окислителя и типичного кислотного оксида. Серная кислота: строение и физические свойства. Химические свойства разбавленной серной кислоты: окислительные и обменные и окислительные свойства концентрированной. Получение серной кислоты в промышленности. Области применения серной кислоты. Сульфаты, в том числе и купоросы. Гидросульфаты. Физические и химические свойства солей серной кислоты. Распознавание сульфат-анионов.

Азот.Общая характеристика элементов VA-группы. Азот. Строение атома. Нахождение в природе. Физические свойства. Окислительные и восстановительные свойства. Получение и применение азота. Строение молекулы аммиака, его физические свойства. Образование межмолекулярной водородной связи. Химические свойства аммиака как восстановителя. Основные свойства аммиака как электонодонора. Комплексообразование с участием аммиака. Взаимодействие аммиака с органическими веществами и с углекислым газом. Получение и применение аммиака. Соли аммония: строение молекул, физические и химические свойства, применение.

Солеобразующие (N_2O_3, NO_2, N_2O_5) и несолеобразующие (N_2O, NO) оксиды. Их строение, физические и химические свойства.

Азотистая кислота и её окислительно-восстановительная двойственность. Соли азотистой кислоты — нитриты. Строение молекулы и физические свойства азотной кислоты. Её химические свойства: кислотные и окислительные в реакциях с металлами и неметаллами, реакции со органическими и неорганическими соединениями. Получение азотной кислоты в промышленности и лаборатории и её применение. Нитраты (в том числе и селитры), их физические и химические свойства. Термическое разложение нитратов. Применение нитратов.

Фосфор. Строение атома и аллотропия фосфора. Физические свойства аллотропных модификаций и их взаимопереходы. Химические свойства фосфора: окислительные (с металлами), восстановительные (с более электроотрицательными неметаллами, кислотами-окислителями, бертолетовой солью) и диспропорционирования (со щелочами). Нахождение в природе и его получение. Фосфин, его строение и свойства.

Оксиды фосфора(III) и (V). Фосфорные кислоты, их физические и химические свойства. Получение и применение ортофосфорной кислоты. Соли ортофосфорной кислоты и их применение.

Углерод.Углерод — элемент IVA-группы. Аллотропные модификации углерода, их получение и свойства. Сравнение свойств алмаза и графита.

Химические свойства углерода: восстановительные (с галогенами, кислородом, серой, азотом, водой, оксидом меди(II), кислотами-окислителями) и окислительные (с металлами, водородом и менее электроотрицательными неметаллами). Углерод в природе.

Оксид углерода(II): строение молекулы, свойства, получение и применение.

Оксид углерода(IV): строение молекулы, свойства, получение и применение.

Угольная кислота и её соли: карбонаты и гидрокарбонаты, — их представители и применение.

Кремний. Кремний в природе. Получение и применение кремния. Физические и химические свойства кристаллического кремния: восстановительные (с галогенами, кислородом, растворами щелочей и плавиковой кислоты) и окислительные (с металлами). Оксид кремния(IV), его свойства. Кремниевая кислота и её соли. Силикатная промышленность.

Демонстрации. Получение водорода свойства. Коллекция И его «Галогены — простые вещества».Получение хлора взаимодействием перманганата калия с соляной кислотой.Получение соляной кислоты и её свойства. Окислительные свойства хлорной воды. Отбеливающее действие жавелевой воды. Горение спички. Взрыв петарды или пистонов. Получение кислорода разложением перманганата калия и нитрата натрия. Получение оксидов из простых и сложных веществ. Окисление аммиака с помощью индикатора и без него. Разложение пероксида водорода, его окислительные свойства в реакции с гидроксидом железа(II) и восстановительные свойства с кислым раствором перманганата калия. Горение серы. Взаимодействие серы с металлами: алюминием, цинком, железом.Получение сероводорода и сероводородной кислоты. Доказательство наличия сульфид-иона в растворе. Качественные реакции на сульфит-анионы. Свойства серной кислоты. Качественные реакции на сульфит- и сульфат-анионы. Схема промышленной установки фракционной перегонки разложение хлорида воздуха.Получение И аммония. Качественная аммония.Получение оксида азота(IV) реакцией взаимодействия меди с концентрированной азотной кислотой. Взаимодействие оксида азота(IV) с водой. Разложение нитрата натрия, горение чёрного пороха. Горение фосфора, растворение оксида фосфора(V) в воде. Качественная реакция на фосфатминеральных удобрений. Коллекция природных анион.Коллекция соединений Кристаллические решётки алмаза и графита. Адсорбция оксида азота(IV) активированным углем. Восстановление оксида меди(II) углем. Ознакомление с коллекцией природных силикатов и продукцией силикатной промышленности. Получение кремниевой кислоты взаимодействием раствора силиката натрия с сильной кислотой, растворение кремниевой кислоты в щёлочи, разложение при нагревании.

Лабораторные опыты. Качественные реакции на галогенид-ионы. Ознакомление с коллекцией природных соединений серы. Качественная реакция на сульфат-анион. Получение углекислого газа, взаимодействие мрамора с соляной кислотой и исследование его свойств. Качественная реакция на карбонат-анион.

Практическая работа 10. Получение оксидов неметаллов и исследование их свойств.

Практическая работа 11. Получение газов и исследование их свойств.

ТЕМА 8. МЕТАЛЛЫ (34 ч)

Щелочные металлы. Положение щелочных металлов в периодической системе элементов Д. И. Менделеева и строение их атомов. Закономерности изменения физических и химических свойств в зависимости от атомного номера металла (изменение плотности, температур плавления и кипения, реакций с водой). Единичное, особенное и общее в реакциях с кислородом, другими неметаллами, жидким аммиаком, органическими и неорганическими кислотами и др. соединениями. Нахождение в природе, их получение и применение.

Оксиды, их получение и свойства.Щёлочи, их свойства и применение.

Соли щелочных металлов, их представители и значение.

Металлы ІБ-группы: медь и серебро. Строение атомов меди и серебра.

Физические и химические свойства этих металлов, их получение и применение. Медь и серебро в природе.

Свойства и применение важнейших соединений: оксидов меди(I) и (II), серебра(I); солей меди(II) (хлорида и сульфата) и серебра (фторида, нитрата, хромата и ацетата).

Бериллий, магний и щёлочноземельные металлы. Положение в периодической системе элементов Д. И. Менделеева и строения атомов металлов IIA-группы. Нахождение в природе, получение, физические и химические свойства, применение щёлочноземельных металлов и их важнейших соединений (оксидов, гидроксидов и солей).

Временная и постоянная жёсткость воды и способы устранения каждого из типов. Иониты.

Цинк. Положение в периодической системе элементов Д. И. Менделеева и строения атомов цинка. Его физические и химические свойства. Нахождение в природе, получение и применение цинка.

Оксид, гидроксид и соли цинка: их свойства и применение.

Алюминий.Положение в периодической системе элементов Д. И. Менделеева и строения атомов алюминия. Его физические и химические свойства. Нахождение в природе, получение и применение алюминия.

Оксид, гидроксид и соли алюминия (в которых алюминий находится в виде катиона и алюминаты): их свойства и применение. Органические соединения алюминия.

Хром.Положение в периодической системе элементов Д. И. Менделеева и строения атомов хрома. Его физические и химические свойства. Нахождение в природе, получение и применение хрома.

Свойства, получение и применение важнейших соединения хрома: оксидов и гидроксидов хрома, дихроматов и хроматов щелочных металлов.

Зависимость кислотно-основных свойств оксидов и гидроксидов хрома от степени его окисления. Хроматы и дихроматы, их взаимопереходы и окислительные свойства.

Марганец.Положение в периодической системе элементов Д. И. Менделеева и строения атомов марганца. Его физические и химические свойства. Нахождение в природе, получение и применение марганца.

Получение, свойства и применение важнейших соединений марганца: оксидов и гидроксидов, солей марганца в различной степени окисления.Соли марганца(VII), зависимость их окислительных свойств от среды раствора.

Железо. Положение в периодической системе элементов Д. И. Менделеева и строения атомов железа. Его физические и химические свойства. Нахождение в природе, получение (чугуна и стали) и применение железа. Получение, свойства и применение важнейших соединений железа(II) и (III): оксидов, гидроксидов, солей. Комплексные соединения железа.

Демонстрации. Образцы щелочных металлов. Взаимодействие щелочных металлов с водой. Реакция окрашивания пламени солями щелочных металлов. Образцы металлов IIA-группы. Взаимодействие кальция с водой. Горение магния в воде и твёрдом углекислом газе. Качественные реакции на катионы магния, кальция, бария. Реакции окрашивания пламени солями металлов IIA-группы. Получение жёсткой воды и устранение жёсткости. Получение и исследование свойств гидроксида хрома(III). Окислительные свойства дихромата калия. Окислительные свойства перманганата калия. Лабораторные опыты. Качественные реакции на катионы меди и серебра

Получение и исследование свойств гидроксида цинка. Взаимодействие алюминия с растворами кислот и щелочей. Получение и изучение свойств гидроксида алюминия. Коллекция железосодержащих руд, чугуна и стали. Получение нерастворимых гидроксидов железа и изучение их свойств. Получение комплексных соединений железа.

Практическая работа 12. Решение экспериментальных задач по теме «Получение соединений металлов и исследование их свойств».

Практическая работа 13.Решение экспериментальных задач по темам: «Металлы» и «Неметаллы». **Резервное время 10 час**