Муниципальное учреждение «Управление образования администрации города Пятигорска» Муниципальное бюджетное общеобразовательное учреждение гимназия №4

СОГЛАСОВАНО

Протокол заседания ШМО учителей математики № 1 от 30 августа 2018 г.

УТВЕРЖДЕНО Директор приказ № 78 от 29 августа 2018 г.

Рабочая программа по геометрии 10 - 11 классы на 2018 - 2019 учебный год

> Составитель программы: Савенко Наталья Анатольевна, учитель математики высшей категории

УМК Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.

СОДЕРЖАНИЕ ПРОГРАММЫ.

10 класс

1. Введение в стереометрию (3 ч).

Основные понятия и аксиомы стереометрии, их связь с аксиомами планиметрии. Примеры пространственных геометрических фигур.

Основная цель - ознакомить учащихся с основными свойствами и способами задания плоскости на базе группы аксиом плоскости и простейших следствий из них.

Расширенная система аксиом, полученная добавлением к аксиомам первых трех аксиом плоскости, служит основой для доказательства первых теорем курса стереометрии. Школьники должны понимать, что и после того, как плоскость в пространстве задана, на ней выполняются все известные им теоремы планиметрии.

В данной теме необходимо дать общее понятие о высказываниях, их отрицаниях, необходимых и достаточных условиях, теоремах, методах доказательств.

В данной теме учащиеся начинают знакомиться с взаимным расположением прямых и плоскостей в пространстве (отношение принадлежности прямых и плоскостей).

2. Параллельность прямых и плоскостей (16 ч).

Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.

Основная цель – сформировать представление учащихся о возможных случаях взаимного расположения двух прямых в пространстве, прямой и плоскости, изучить свойства и признаки параллельности прямых и плоскостей.

Особенностью является то, что сразу вводятся в рассмотрение тетраэдр и параллелепипед, разбираются их свойства, что позволяет расширить систему задач, включив в нее задачи на построение точек и линий пересечения прямых и плоскостей, простейших задач на построение сечений многогранников. В ходе решения этих задач следует добиваться от учащихся проведения доказательных рассуждений.

В рамках этой темы учащиеся знакомятся с параллельным проектированием и его свойствами.

3. Перпендикулярность прямых и плоскостей (16 ч).

Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Перпендикуляр и наклонная к плоскости, проекция наклонной на плоскость. Теорема о трех перпендикулярах. Двугранный угол. Перпендикулярность плоскостей. Трехгранный угол.

Основная цель - дать учащимся систематические сведения о перпендикулярности прямых и плоскостей в пространстве. Ввести основные метрические понятия: расстояние от точки до плоскости, расстояние между параллельными плоскостями, между параллельными прямой и плоскостью, расстояние между скрещивающимися прямыми, угол между прямой и плоскостью, угол между двумя плоскостями. изучить свойства прямоугольного параллелепипеда.

Материал темы обобщает и систематизирует известные учащимся из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесообразно сочетать с систематическим повторением соответствующего материала из планиметрии, что будет способствовать более глубокому усвоению нового материала, позволит ознакомить учащихся с использованием аналогии в математике.

При изучении существенно возрастает роль задач на вычисление. Следует отметить, что в основе практически всех этих задач лежат сведения, изученные в планиметрии: теорема Пифагора и следствия из нее. В отдельных задачах эти сведения применяются после предварительного использования теоремы о трех перпендикулярах или теоремы о перпендикулярных плоскостях. При решении задач на вычисление необходимо одерживать достаточно высокий уровень обоснованности выводов с опорой на известные учащимся сведения из планиметрии и изученные в теме определения и признаки перпендикулярности, теоремы о связях между параллельностью и перпендикулярностью, теоремы о трех перпендикулярах.

Различные виды углов в пространстве наряду с расстояниями являются основными количественными характеристиками связанного расположения прямых и плоскостей. Отработка этих понятий до уровня навыков при решении вычислительных задач важна для курса 11 класса.

Как при изучении предыдущей темы, существенную роль в формировании пространственных представлений учащихся играют задачи на воображаемые построения, в большинстве случаев решаемые конструктивно.

Тема имеет важное пропедевтическое значение для изучения многогранников. Фактически при решении многих задач, связанных с вычислением длин перпендикуляра и наклонных к плоскости, речь идет о вычислении элементов пирамид.

4. Многогранники (13 ч).

Понятие многогранника. Призма. Пирамида. Правильные многогранники.

Основная цель - дать учащимся систематические сведения об основных видах многогранников. Познакомить с формулой Эйлера для выпуклых многогранников, с правильными многогранниками и элементами их симметрии.

Многогранник определяется как поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело. Уточняется понятие геометрического тела. Наряду с формулой Эйлера в разделе содержится один из вариантов пространственной теоремы Пифагора, связанный с тетраэдром, у которого все плоские углы при одной вершине прямые.

Практическая направленность курса реализуется значительным количеством вычислительных задач, в ходе решения которых развиваются навыки общения с основными геометрическими величинами: длинами, величинами углов, площадей. В целях предупреждения возможных ошибок учащихся следует требовать от них обоснования правильности выбора или построения различных видов углов в пространстве, включая угол прямой с плоскостью, линейный угол двугранного угла. При решении задач на вычисление, в том числе задач, в которых фигурируют не только правильная призма и пирамиды, совершенствуются и развиваются умения учащихся применять аппарат алгебры и тригонометрии к решению геометрических задач.

Учащиеся должны уметь применять изученные в теме формулы для нахождения площадей боковых поверхностей призм и правильной пирамиды при решении геометрических и практических задач.

5. Векторы в пространстве. (4 ч).

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Скалярное произведение векторов. Компланарные векторы.

Основная цель – обобщить и систематизировать представления учащихся о векторах, ввести понятие компланарных векторов в пространстве и рассмотреть вопрос о разложении любого вектора по трем данным некомпланарным векторам.

Рассмотрение векторов носит в основном характер повторения, поэтому излагается довольно сжато. Более подробно рассматриваются вопросы, характерные для векторов в пространстве.

Следует обратить внимание на те задачи, в которых в явном виде не присутствует указание на применение векторов или координат, но решение которых значительно упрощается после этого.

6. Планиметрия (11 ч)

1) Решение треугольников (3ч)

Основные понятия, связанные с треугольником. Признаки равенства треугольников. Медиана, биссектриса и высота треугольника. Параллельные прямые. Признаки подобия треугольников. Соотношения между сторонами и углами треугольника - вычисление элементов треугольника. Прямоугольный треугольник, нахождение его элементов. Рассматриваются задачи на нахождение медианы треугольника, с использованием приема удвоения медианы. Также рассматриваются различные способы нахождения высот и биссектрис треугольника.

Основная цель – систематизация и обобщение ранее полученных в разных классах сведений о треугольнике; закрепление навыков и умений доказывать равенство и подобие треугольников, опираясь на признаки; формирование аппарата «решения» треугольников; обзор методов решения задач с использованием метрических соотношений в треугольнике; развитие пространственного мышления (через решение задач на построение).

2) Четырехугольники (2ч)

Рассматриваются основные свойства и признаки четырехугольников. Метрические соотношения в четырехугольниках. Разбираются полезные приемы работы с трапецией и параллелограммом. Решаются планиметрические задачи повышенной сложности.

Основная цель — систематизация сведений о четырехугольниках (особое внимание необходимо обратить на характеристические свойства каждого из видов четырехугольников); развитие формально-логического мышления (задачи на доказательство); закрепление навыков использования основных формул о метрических соотношениях в четырехугольниках.

3) Площадь треугольника. Отношение отрезков и площадей. (3 ч)

Доказываются полезные при решении задач теоремы Чевы и Менелая, решаются задачи с использованием этих теорем. Формулы нахождения площади фигур. Задачи на доказательство.

Основная цель – систематизация сведений о нахождении площадей треугольников и его частей; закрепление навыков нахождения отношений элементов многоугольников и отношений площадей частей многоугольников.

4) Углы и отрезки, связанные с окружностью. Многоугольники и окружности. (2 ч)

Вычисление углов с вершиной внутри и вне круга, углы между хордой и касательной. Рассматриваются теоремы о произведении хорд, о касательной и секущей, которые полезно использовать при решении целого ряда планиметрических задач. Рассматриваются задачи на касающиеся, пересекающиеся окружности, окружности, связанные с треугольником и четырехугольником, на пропорциональные отрезки в окружности. Разбирается метод вспомогательной окружности. Рассматриваются вписанные и вневписанные окружности. Также рассматриваются задачи на вписанные и описанные четырехугольники, в которых используются свойства и признаки вписанных и описанных четырехугольников. Отмечаются некоторые свойства высот треугольника и ортоцентра треугольника.

7. Резерв учебного времени 5 часов. Может быть использован для проведения внешнего мониторинга качества образования учащихся и повторения курса за 10 класс, а также решения планиметрических задач, соответствующих

11 класс

Координаты и векторы. (16 ч)

Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы *и плоскости*. *Формула расстояния от точки до плоскости*.

Векторы. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Длина вектора в координатах, угол между векторами в координатах. Коллинеарные векторы, коллинеарность векторов в координатах.

Основная цель – обобщить и систематизировать представления учащихся о векторах. Применять формулы координат середины отрезка, формулы длины вектора и расстояния между двумя точками; вычислять скалярное произведение в координатах и как произведение длин векторов на косинус угла между ними; находить угол между векторами по их координатам; применять формулы вычисления угла между прямыми.

Тела и поверхности вращения. (16 ч)

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

Основная цель - выполнять построение цилиндра и конуса, его сечения, находить элементы; определять взаимное расположение сфер и плоскости; составлять уравнение сферы по координатам точек; решать типовые задачи по теме.

Объемы тел и площади их поверхностей. (22 ч)

Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы объема шара и площади сферы.

Основная цель – находить площадь поверхности и объем тел вращения; находить объем куба и объем прямоугольного параллелепипеда; решать задачи с использованием формулы объема прямой призмы; показать возможность применения определенного интеграла для вывода формул объемов; находить объем наклонной призмы; применять метод для вывода формулы объема пирамиды, находить объем пирамиды.

Резерв учебного времени. Может быть использован для проведения внешнего мониторинга качества образования учащихся и повторения курса за 10 класс, а также решения планиметрических задач, соответствующих

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ.

10 класс

2 часа в неделю, всего 68 часов

No	Тема	Характеристика основных видов деятельности
урока	Тема	учащихся (на уровне учебных действий)
	Аксиомы стереометрии и их следствия. Зч	
1	Предмет стереометрии. Аксиомы стереометрии.	Формулировать аксиомы о взаимном расположении
2	Некоторые следствия из аксиом.	точек, прямых и плоскостей в пространстве
3	Решение задач на применение аксиом стереометрии и их следствий.	
	Глава 1. Параллельность прямых и плоскостей. 16 ч.	
	§1. Параллельность прямых, прямой и плоскости.	Изображать, распознавать и описывать взаимное
4	Параллельные прямые в пространстве. Параллельность трех прямых.	расположение прямых, прямой и плоскости в
5	Параллельность прямой и плоскости	пространстве.
6	Решение задач по теме «Параллельность прямой и плоскости»	Решать задачи на построение, вычисление,
7	Решение задач по теме «Параллельность прямой и плоскости»	доказательство
	§ 2. Взаимное расположение прямых в пространстве. Угол между двумя	
	прямыми.	Формулировать определения скрещивающихся
8	Скрещивающиеся прямые. Проведение через одну из скрещивающихся прямых	прямых, углов с сонаправленными сторонами,
O	плоскости, параллельной другой прямой.	между прямыми.
9	Углы с сонаправленными сторонами. Угол между прямыми.	Решать задачи на доказательство и вычисления.
10	Углы с сонаправленными сторонами. Угол между прямыми.	
11	Контрольная работа № 1по теме «Аксиомы стереометрии. Взаимное	
11	расположение прямых, прямой и плоскости.»	
	§ 3.Параллельность плоскостей.	
12	Параллельные плоскости. Признак параллельности двух плоскостей.	
13	Свойства параллельных плоскостей.	
	§4. Тетраэдр и параллелепипед.	Изображать плоские и пространственные фигуры и

14	Изображение плоских фигур, изображение пространственных фигур.	распознавать их на чертежах.
15	Тетраэдр. Параллелепипед. Свойства граней и диагоналей параллелепипеда.	Изображать тетраэдр и параллелепипед и
16	Задачи на построение сечений. Построение сечений методом следов.	распознавать их на чертеже.
17	Задачи на построение сечений многогранников.	Решать задачи на построение сечений.
18	Контрольная работа №2 по теме: «Тетраэдр и параллелепипед».	1
19	Зачет по теме «Параллельность прямых и плоскостей»	
	Глава 2. Перпендикулярность прямых и плоскостей. 16 ч.	
	§1. Перпендикулярность прямой и плоскости.	
•	Перпендикулярные прямые в пространстве. Параллельные прямые,	Формулировать определение перпендикулярных
20	перпендикулярные к плоскости.	прямых в пространстве, распознавать и изображать
2.1	Признак перпендикулярности прямой и плоскости. Теорема о прямой,	их на рисунках.
21	перпендикулярной к плоскости.	Формулировать и доказывать признак
22	Теорема о прямой, перпендикулярной к плоскости.	перпедикулярности прямой и плоскости. Решать
23	Решение задач по теме «Перпендикулярность прямой и плоскости» задачи на вычисления и доказательства.	
24	Решение задач по теме «Перпендикулярность прямой и плоскости»	
	§2. Перпендикуляр и наклонные. Угол между прямой и плоскостью.	
2.5	Расстояние от точки до плоскости. Теорема о трех перпендикулярах Подготовка	Формулировать определение наклонной,
25	к ЕГЭ (задача №14)	перпендикуляра.
26	Расстояние от точки до плоскости. Теорема о трех перпендикулярах	Формулировать и доказывать теорему о трех
27	Угол между прямой и плоскостью	перпендикулярах. Решать задачи на доказательство
28	Угол между прямой и плоскостью Подготовка к ЕГЭ (задача №14)	и вычисления.
20	Решение задач по теме «Теорема о трех перпендикулярах, угол между прямой и	Распознавать и изображать угол между прямой и
29	плоскостью»	плоскостью.
	§3. Двугранный угол. Перпендикулярность плоскостей.	Формулировать определение
30	Двугранный угол. Признак перпендикулярности двух плоскостей.	двугранного угла. Формулировать и доказывать
31	Двугранный угол. Признак перпендикулярности двух плоскостей.	признак перпендикулярности плоскостей. Решать
32	Прямоугольный параллелепипед Подготовка к ЕГЭ (задача №8)	задачи на доказательство и вычисления,
33	Трехгранный угол и его свойства, многогранный угол	моделировать условие задачи с помощью чертежа
34	Контрольная работа №3 по теме: «Двугранный угол. Перпендикулярность	или рисунка.
J 1	плоскостей».	
35	Зачет по теме «Перпендикулярность прямых и плоскостей»	
	Глава 3. Многогранники. 13 ч.	

	§1. Понятие многогранника. Призма.		
36	Понятие многогранника. Геометрическое тело. Теорема Эйлера, эйлерова		
30	характеристика.		
37	Призма, площадь поверхности призмы.	Формулировать определение призмы. Решать задач	
38	Призма, площадь поверхности призмы. Пространственная теорема Пифагора	на нахождение площади поверхности призмы.	
	§2. Пирамида		
39	Пирамида. Правильная пирамида.	Формулировать определение пирамиды. Решать	
40	Пирамида, площадь поверхности пирамиды.	задачи на нахождение площади поверхности	
41	Усеченная пирамида.	пирамиды	
42	Решение задач на нахождение площади боковой поверхности пирамиды		
	§3. Правильные многогранники.	Строить равные и симметричные фигуры,	
43	Симметрия в пространстве. Понятие правильного многогранника.	формулировать определение правильного	
43	Теорема о существовании пяти видов правильных многогранников	многоугольника. Решать задачи на вычисление и	
44	Элементы симметрии правильных многогранников.	доказательство.	
45	Решение задач по теме «Многогранники» Подготовка к ЕГЭ (задача №8)		
46	Решение задач по теме «Многогранники» Подготовка к ЕГЭ (задача №8)		
47	Контрольная работа №4 по теме: «Многогранники».		
48	Зачет по теме «Многогранники»		
	Глава 4. Векторы в пространстве 4 ч. §1.Понятие вектора в пространстве.	Формулировать определение и иллюстрировать	
49	Понятие вектора. Равенство векторов.	понятие вектора. Выполнять операции над	
	§2. Сложение и вычитание векторов. Умножение вектора на число.	векторами. Формулировать определение	
50	Сложение и вычитание векторов. Сумма нескольких векторов. Умножение	компланарных векторов. Выполнять разложения	
30	вектора на число	вектора по трем некомпланарным векторам.	
	§3. Компланарные векторы		
51	Компланарные векторы. Правило параллелепипеда.		
52	Разложение вектора по трем некомпланарным векторам		
	Основные понятия планиметрии. 11 ч.	Объяснять, какая фигура называется треугольником,	
53	Прямоугольный треугольник. Медиана прямоугольного треугольника.	что такое медиана, биссектриса и высота	
54	Теорема о медиане косоугольного треугольника. Удвоение медианы	треугольника.	
55	Теорема о биссектрисе треугольника.	Решать задачи на нахождение биссектрис и высот	
56	Задачи с нахождением биссектрис и высот треугольника.	треугольника.	
57	Теоремы Менелая и Чевы.	Решать задачи с помощью метода вспомогательной	

58	Задача Эйлера.	окружности.
59	Отрезки, связанные с окружностью. Углы, связанные с окружностью.	Формулировать определение вписанных и
60	Вписанная и вневписанная окружности.	описанных четырехугольников.
61	Вписанные четырехугольники. Описанные четырехугольники.	
62	Пропорциональные отрезки в окружности.	
63	Итоговая контрольная работа по стереометрии №5	
	Резерв времени. Повторение. 5 часов.	
64	Параллельность прямых и плоскостей.	
65	Теорема о трех перпендикулярах, угол между прямой и плоскостью.	
66	Многогранники.	
67	Многогранники.	
68	Заключительный урок-беседа.	

11 класс 2 часа в неделю, всего 68 часов

	Количество часов по разделу	Тема урока	Характеристика основных видов деятельности учащихся (на уровне учебных действий)
		Глава V. Метод координат в пространст	гве. 16 ч
1	1	Прямоугольная система координат в пространстве.	Уметь строить точку по заданным к-там и
2	1	Координаты вектора.	находить к-ты точки, изображенной в системе к-
3	2	Координаты вектора.	T.
4	1	Связь между координатами векторов и координатами точек.	Знать алгоритмы сложения двух и более
5	1	Простейшие задачи в координатах.	векторов, произведение вектора на число,
6	2	Простейшие задачи в координатах. Подготовка к ЕГЭ (задача №3)	разности двух векторов.
7	1	Контрольная работа №1 по теме «Координаты точки и	Уметь применять
		координаты вектора»	их при выполнении упражнений.
8	1	Угол между векторами. Скалярное произведение векторов.	Применять
9	2	Угол между векторами. Скалярное произведение векторов.	формулы координат середины отрезка, формулы
10	1	Вычисление углов между прямыми и плоскостями.	длины вектора и расстояния между двумя
11	2	Вычисление углов между прямыми и плоскостями.	точками.
		Подготовка к ЕГЭ (задача №14)	вычислять скалярное произведение
12	3	Вычисление углов между прямыми и плоскостями.	в координатах и как произведение длин векторов
		Подготовка к ЕГЭ (задача №14)	на косинус угла между
13	1	Уравнение плоскости.	ними; находить угол
		Формула расстояния от точки до плоскости	между векторам по их координатам; применять
14	1	Движения	формулы вычисления угла между прямыми
15	1	Контрольная работа №2 по теме «Скалярное произведение»	
16	1	Зачёт по теме «Метод координат в пространстве»	
		Глава VI. Цилиндр, конус, шар. 16	бч
17	1	Понятие цилиндра.	Находить площадь осевого сечения
18	1	Цилиндр. Основание, высота, боковая поверхность, образующая,	цилиндра, строить осевое сечение цилиндра;
		развертка.	выполнять построение конуса и его сечения,
19	1	Площадь поверхности цилиндра.	находить элементы;

20	2	Площадь поверхности цилиндра. Подготовка к ЕГЭ (задача №8)	решать задачи на нахождение площади
21	1	Понятие конуса.	поверхности конуса;
22	1	Конус. Усеченный конус. Основание, высота, боковая поверхность,	определять
		образующая.	взаимное расположение сфер и плоскости;
23	1	Площадь поверхности.	составлять
24	1	Усечённый конус.	уравнение сферы по координатам точек; решать
		Подготовка к ЕГЭ (задача №8)	типовые задачи по теме
25	1	Сфера и шар.	
26	1	Уравнение сферы.	
27	1	Взаимное расположение сферы и плоскости	
28	1	Касательная плоскость к сфере.	
29	1	Площадь сферы.	
30	1	Разные задачи на многогранники, цилиндр, конус и шар	
		Подготовка к ЕГЭ (задача №8)	
31	1	Контрольная работа №3 по теме «Тела вращения»	
32	1	Зачёт по теме «Тела вращения»	
		Глава VII. Объемы тел. 22 ч	
33	1	Понятие объёма. Объём прямого параллелепипеда.	Находить объем куба и объем
34	2	Понятие объёма. Объём прямого параллелепипеда.	прямоугольного параллелепипеда;
35	3	Понятие объёма. Объём прямого параллелепипеда.	решать задачи с использованием фор-
36	1	Объём прямой призмы.	мулы объема прямой призмы;
37	1	Объём цилиндра.	показать возможность применения определенного
38	2	Объём цилиндра.	интеграла для вывода формул объемов;
39	1	Вычисления объёмов тел с помощью интеграла.	находить объем наклонной
40	1	Объём наклонной призмы.	призмы;
41	1	Объём пирамиды.	применять метод для вывода формулы объема
42	2	Объём пирамиды.	пирамиды, находить объем пирамиды;
43	1	Объём конуса.	выводить формулы объемов конуса
44	2	Объём конуса.	и усеченного конуса,
45	1	Решения задач на нахождения объёмов тел. Подготовка к ЕГЭ (задача	решать задачи на вычисление объемов конуса
		№8)	и усеченного конуса;
46	1	Контрольная работа №4 по теме «Объёмы призмы, цилиндра,	выводить формулу с помощью определенного

		конуса»	интеграла и использовать ее при решении задач
47	1	Объём шара.	на нахождение объема шара;
48	2	Объём шара.	решать задачи на нахождение объемов шарового
49	1	Объём шарового сегмента, шарового слоя и шарового сектора	слоя, сектора, сегмента
50	2	Объём шарового сегмента, шарового слоя и шарового сектора	
51	1	Площадь сферы.	
52	1	Решение задач по темам «Объём шара, площадь сферы»	
53	1	Контрольная работа №5 по теме «Объём шара, площадь сферы»	
54	1	Зачёт по теме «Объём шара, площадь сферы»	
		Повторение. Итоговая контрольная рабо	та. 14 ч
55	1	Аксиомы стереометрии.	
56	1	Параллельность прямых, прямой плоскости, параллельность	
		плоскостей.	
57	1	Перпендикулярность прямой и плоскости. Теорема о трёх	
		перпендикулярных.	
58	1	Двугранный угол. Перпендикулярность плоскостей.	
59	1	Многогранники.	
		Подготовка к ЕГЭ (задачи №8, №14)	
60	2	Многогранники.	
		Подготовка к ЕГЭ (задачи №8, №14)	
61	1	Векторы в пространстве.	
62	1	Цилиндр, конус, шар.	
		Подготовка к ЕГЭ (задачи №8, №14)	
63	2	Цилиндр, конус, шар.	
		Подготовка к ЕГЭ (задачи №8, №14)	
64	1	Площади поверхностей тел вращения.	
65	1	Объёмы тел вращения	
66	1	Практикум по решению задач ЕГЭ.	
67	1	Практикум по решению задач ЕГЭ.	
68	1	Итоговый урок.	

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ГЕОМЕТРИИ

Предметные результаты, характеризуют качество (уровень) овладения обучающимися содержания предмета.

Выпускник научится:

- пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- строить простейшие сечения куба, призмы, пирамиды;
- использовать при решении стереометрических задач планиметрические факты и методы;
- соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;
- изображать геометрические фигуры, многогранники и тела, выполнять чертеж по условию задачи;
- решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
- проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
- вычислять линейные элементы и углы в пространственных конфигурациях, площади поверхностей пространственных тел и их простейших комбинаций;
- строить сечения многогранников;
- проводить доказательные рассуждения в ходе решения задач.

Выпускник получит возможность:

- овладеть методами решения задач на вычисление и доказательство;
- приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- использовать приобретенные знания для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- использовать приобретенные знания для вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства;
- приобрести опыт исследования свойств пространственных фигур с помощью компьютерных программ;
 - приобрести опыт выполнения проектов.